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Abstract: Both large and small firms maintain call centers to establish contact between themselves and their customers. A 

call center is staffed by Customer Service Representatives (CSRs). In addition to CSRs, a call center needs computers and 

telecommunication equipment such as an Automatic Call Distributor (ACD). If calls arrive according to a Poisson arrival 

process and the service times have an exponential distribution, the call center can be modeled as an M/M/s queue where s is the 

number of CSRs. Typical calculations include finding the number of CSRs required and finding the number of trunks lines 

required. However, if call center models ignore the abandonment behavior of customers, they distort information that is 

relevant to management. Typically, ignoring abandonment would lead to overstaffing, as fewer CSRs are actually needed, 

because some of the callers abandon the system. Also, nonstationarity of arrivals is highly prevalent in call centers. Green, 

Kolesar and Whitt plot hourly arrival rates for a financial services call center. There is significant variation in arrivals by time 

of day. In this paper, we model call centers as multiserver Markovian queues with both nonstationarity and abandonment. 

Nonstationarity is modeled by having a Poisson arrival stream with time dependent mean, which varies according to a 

sinusoid. Abandonment is defined in terms of an exponential patience random variable, which is the amount of time the caller 

would be on hold before abandoning the call. We numerically study the performance of this nonstationary M(t)/M/s+M queue 

with abandonment and compare its performance measures with those of the stationary M/M/s+M queue. We find that 

approximating a nonstationary system by a stationary system, even at low levels of nonstationarity, can lead to significant 

errors. Similar results in a system without abandonment, have been obtained by Green, Kolesar and Svoronos. Additionally, we 

find that abandonment dampens the effect of nonstationarity. Since abandonment and nonstationarity are both present together 

in real call centers, a real call center with a high level of abandonment behaves closer to an ideal stationary system. 

Keywords: Queueing, Nonstationarity, Abandonment, Markovian Queues, Call Centers 

 

1. Introduction 

Both large and small firms maintain call centers to 

establish contact between themselves and their customers. In 

recent years, especially in the past decade, the number of 

firms maintaining call centers has grown dramatically. The 

firm could be an online retailer offering sales and returns 

through the call center or a logistics company offering 

tracking services for its parcels. Alternatively, it could be a 

financial services firm offering advice on financial products 

or else a software firm providing sales and after-sales 

support. 

A call center is staffed by Customer Service 

Representatives (CSRs), a large pool of personnel, who 

together may handle thousands of calls per day. In addition to 

CSRs, a call center needs computers and telecommunication 

equipment such as an Automatic Call Distributor (ACD), that 

manages the queue of customers and connects customers to 

CSRs. Call centers may be either generic or involve skill-

based routing. In generic call centers any CSR can handle 

any call. In skill-based routing different CSRs possess 

different skills and handle subsets of customers. For example 

different CSRs may be fluent in different languages and 

handle calls accordingly. Alternatively, for a financial 

services firm, some CSRs may be trained to sell health 

insurance while some others sell car insurance. Therefore 

incoming calls to the call center have to be routed to the 

CSRs keeping in view their differing skills. 
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Typically, in practice, see Cleveland [1] and Reynolds [2], 

call centers are modeled as queueing systems in which it is 

assumed that there is one generic set of CSRs who handle all 

calls, i.e. skill-based routing is ignored. Also it is assumed 

that once customers join the queue, they do not abandon the 

queue. So customers wait for service as long as is required. 

In addition it is assumed that incoming traffic at the call 

center does not vary with time of day, i.e. the arrival process 

is stationary. 

With these assumptions, if calls arrive according to a 

Poisson arrival process and the service times have an 

exponential distribution, the call center can be modeled as an 

M/M/s queue where s is the number of CSRs. Typical 

calculations include finding the number of CSRs required 

and finding the number of trunks lines required, see Reynolds 

[2]. A trunk line connects to the ACD and the number of 

customers who succeed in getting through at a time when all 

CSRs are busy depends on the number of trunk lines 

available. For finding the number of CSRs, a target 

probability of delay in receiving service is chosen. Given this 

target probability of delay in the M/M/s model, the value of s 

is chosen. For finding the number of trunk lines, the M/M/s/s 

loss system (Erlang B) is used, i.e. there are s servers and s 

places in queue, so no call can wait. A target probability of 

blockage is chosen and s is found from the formula for the 

Erlang B queueing model, where s is the number of trunks to 

be made available. 

In this paper, we model call centers as multiserver 

Markovian queues with both nonstationarity and 

abandonment. We first discuss abandonment. 

1.1. Abandonment in Call Centers 

If call center models ignore abandonment, they distort 

information that is relevant to management. Typically, 

ignoring abandonment would lead to overstaffing, as fewer 

CSRs are actually needed, because some of the callers 

abandon the system. Consider the following numerical 

example, which has been taken from Garnett, Mandelbaum 

and Reiman [3]. There are 50 CSRs, 48 calls per minute, the 

average service time is 1 minute and the average patience is 2 

minutes. 

Table 1. Comparing results for models with and without abandonment. 

 M/M/s M/M/s+M 

Fraction Abandoning -- 3.1% 

Average speed of answer 20.8 sec 3.6 sec 

Waiting time’s 90th percentile 58.1 sec 12.5 sec 

CSR Utilization 96% 93% 

It can be shown that the performance measures of the 

system with 54 CSRs and no abandonment would be very 

similar to the performance measures of the system with 50 

CSRs and a 3% abandonment rate. Therefore if we do not 

include abandonment in our queueing model we would need 

to use 4 extra CSRs. While if we include abandonment we 

realize we do not need these extra CSRs and save 8% 

(because of the 4 CSRs) on personnel costs. It is usually 

estimated that personnel costs easily account for more than 

50% of total cost in call centers. Therefore the above saving 

is significant and including abandonment in the model 

improves performance. 

We next briefly discuss capacity selection in the absence 

and presence of abandonment. This is the square root staffing 

rule. Here capacity refers to the numbers of CSR’s to have at 

any point in time. 

Consider the M/M/s queue. Let λ be the arrival rate in 

number of callers per hour and µ the service rate. We have 

that 1/µ is the mean call duration in hours. Define R = λ/µ. 

Then R is the offered load or the number of hours of calling 

time that needs to be serviced per hour. This demand is met 

using s servers. Define ρ = λ/sµ, to be the utilization. 

The square root staffing rule in the absence of 

abandonment is based on the following heavy traffic limit 

theorem in Halfin and Whitt [4]. 

Let sW ρ  be a random variable with the steady state 

waiting time distribution for each positive integer s and each 

ρ, 0< ρ<1. 

Theorem (Halfin and Whitt 1981). The limit 

( )0sP W ρ α> → as s → ∞ , where 0< α<1, holds if and only 

if 

(1 ) sρ β− →  as s → ∞  

where 0 β< < ∞ . 

Here 
( )

( )

1

1
βϕ β

α
φ β

−
 

= + 
  

, where ( ).φ  is the standard 

normal density function and ( ).ϕ  is the standard normal 

cumulative distribution. 

Whitt [5] showed that the condition 

(1 ) sρ β− =  

is equivalent to 

s R Rβ= +  

if β  is small compared to s . 

The square root staffing rule then is, 

s R Rβ= + , 

where β  is a constant that depends on the service level. The 

first term in the above equation is the offered load and the 

second term is the excess capacity needed to meet service 

level requirements. This grows less than proportionately with 

R. 

In practice, the number of CSRs required, can be 

determined as follows. Determine a target P (Wait >0) = α 

based on service level considerations. Choose β from the 

above equation in the Theorem, relating α and β. Find the 

capacity or the number of CSRs as, s R Rβ= + . 
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There is also a square root staffing rule in the presence of 

abandonment, which has been derived by Garnett, 

Mandelbaum and Reiman [3]. See also Daskin [6]. We first 

need to define abandonment. Abandonment is defined in 

terms of a patience random variable, which is the amount of 

time the caller would be on hold before abandoning the call. 

We assume this patience random variable has an exponential 

distribution with mean 1/θ. For call centers, Garnett, 

Mandelbaum and Reiman [3] define a mean patience of 10 

minutes as very patient, 1 minute as moderately patient and 6 

seconds as very impatient. 

The number of CSRs required in the presence of 

abandonment, can be determined in a similar way to what has 

been described above for the case of no abandonment. First, 

we determine a target P (Wait >0) = α based on external 

service level considerations. Garnett, Mandelbaum and 

Reiman [3], have developed an approximation for the 

probability of waiting in the presence of abandonment. This 

is, 

( )
( )

1

/ . / /
1

h

h

θ µ β θ µ
α

β

−
 
 = +
 −
  

 

where ( ) ( )
( )1

x
h x

x

φ
ϕ

=
−

. 

Given α, we determine β from the above equation. Then, 

we find s as 

s R Rβ= +  

For a survey of research in the application area of call 

centers, refer Gans, Koole and Mandelbaum [7]. 

Motivated by applications to service systems, Yunan and 

Whitt [8] develop simple engineering approximation 

formulas for the steady-state performance of heavily loaded 

G/ GI/ n+ GI multiserver queues, which can have non-

Poisson and nonrenewal arrivals and non-exponential 

service-time and patience-time distributions. Good 

performance across a wide range of parameters is obtained 

by making heuristic refinements, the main one being 

truncation of the queue length and waiting time 

approximations to nonnegative values. Simulation 

experiments show that the proposed approximations are 

effective for large-scale queuing systems for a significant 

range of the traffic intensity ρ and the abandonment rate θ. 

Batt and Terwiesch [9] study queue abandonment from a 

hospital emergency department. The authors show that 

abandonment is influenced by the queue length and the 

observable queue flows during the waiting exposure, even 

after controlling for wait time. They also show that patients 

are sensitive to being "jumped" in the line and that patients 

respond differently to people more sick and less sick moving 

through the system. This customer response to visual queue 

elements is not currently accounted for in most queuing 

models. Additionally, to the extent the visual queue 

information is misleading or does not lead to the desired 

behavior, managers have an opportunity to intervene by 

altering what information is available to waiting customers. 

1.2. Nonstationarity of Arrivals in Call Centers 

Nonstationarity of arrivals is highly prevalent in call 

centers. Green, Kolesar and Whitt [10] plot hourly arrival 

rates for a financial services call center. There is significant 

variation in arrivals by time of day. Reynolds [2], reiterates 

this by mentioning, `The most accurate approach for call 

center forecasting involves time series analysis, which takes 

into account both trend and seasonality. It is the approach 

used in most call centers and serves as the basis for most of 

the automated workforce management forecasting models’. 

Reynolds [2] illustrates her method for time of day 

forecasting using the following data (Chapter 3, page 35), 

which are samples from a call center that takes calls from 

8:00 AM to 6:00 PM daily. The data represents half-hourly 

call volumes for the previous three Mondays. 

Table 2. Half-hourly call volumes for Monday. 

 June 5 June 12 June 19 Average 

0800 205 200 210 205 

0830 265 255 260 260 

0900 300 310 305 305 

0930 345 345 345 345 

1000 380 385 390 385 

1030 400 405 410 405 

1100 395 400 405 400 

1130 385 395 390 390 

1200 355 360 365 360 

1230 350 355 360 355 

1300 385 390 395 390 

1330 375 385 380 380 

1400 395 395 395 395 

1430 400 405 410 405 

1500 360 365 370 365 

1530 320 320 320 320 

1600 270 265 275 270 

1630 190 195 200 195 

1700 160 155 150 155 

1730 105 100 95 100 

Total    6385 

 

Figure 1. Average half-hourly call volume for Monday. 

From Figure 1, we see there is significant variation in call 

volumes by time of day. The maximum number of calls in a 
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half-hour are 405 from 10:30-11:00, while the minimum calls 

during a half-hour are 100 from 5:30-6:00. This variation 

indicates a significant amount of nonstationarity in the arrival 

process. 

Typically, nonstationarity is accounted for by dividing the 

day into many smaller time intervals and assuming a 

stationary model applies to each of the smaller time intervals. 

Still, it is important to know that if a nonstationary arrival 

process is approximated by a stationary model, how accurate 

will that approximation be. Green, Kolesar and Svoronos 

[11], numerically study the behavior of a nonstationary 

multiserver Markovian queue with sinusoidal Poisson input. 

The authors find that if a queueing system has a periodic 

arrival process with a relative amplitude (amplitude 

normalized by the average arrival rate) of only 10%, a 

stationary model is not likely to do well. The authors further 

find in their numerical work that at a relative amplitude of 

only 33%, the actual expected delay is more than twice the 

stationary expected delay, while at a relative amplitude of 

100% the actual expected delay is ten times the stationary 

expected delay. 

Theoretical papers which compare stationary systems and 

nonstationary systems include Ross [12], Rolski [13] and 

Svoronos and Green [14]. Ross [12] put forward two 

conjectures. Firstly, that in a single server infinite capacity 

queueing system, the more nonstationary the arrival process, 

the greater the average delay. Secondly, in a finite capacity 

system, the proportion of lost customers is greater when 

arrivals are nonstationary than when they are stationary. 

Rolski [13] proved the second Ross conjecture for pure loss 

systems with exponential service times and one or two 

servers. Svoronos and Green [14] showed that for single 

server loss systems with exponential service times and 

periodic Poisson input, the proportion of losses in convex 

increasing in the amplitude. 

Aksin and Harker [15] study the problem of determining 

capacity for a call center, where capacity consists of multiple 

types of resources that are required simultaneously to provide 

service. In addition, the system is characterized by the 

presence of a common resource that is shared across multiple 

types of customers. In the case of call centers, the capacity is 

the optimal number of servers that need to be allocated to 

different call types. Heuristics are proposed for the problem. 

The authors show that for systems experiencing heavy loads 

and serving a diverse set of customers, the proposed 

heuristics outperform current methods that ignore the role of 

a shared resource. 

Tirdad et. al [16] consider a nonstationary M(t)/M/c/c 

queue with periodic arrival rates and two levels of the 

number of servers. The authors define a cost function which 

needs to be minimized and find the cost using transient 

solutions of the M(t)/M/c/c queue. The results of the model 

are used to build a Markov Decision Process (MDP) and 

applied in the area of healthcare. 

Cho and Ko [17] investigate the stabilization of the mean 

virtual response time in a single-server processor sharing 

(PS) queueing system with a time-varying arrival rate and a 

service rate control. The authors propose and compare a 

modified square-root (SR) control and a difference-matching 

(DM) control to stabilize the mean virtual response time. 

Extensive simulation studies with various settings of arrival 

processes and service times show that the DM control 

outperforms the SR control for heavy-traffic conditions, and 

that the SR control performs better for light-traffic 

conditions. 

The natural queueing models for many operations research 

applications have time-varying arrival rates. In addition, the 

natural models often are not Markov stochastic processes, so 

that they are not amenable to exact mathematical analysis. 

Whitt and You [18] propose a time-varying robust queueing 

algorithm to approximate the time-varying distribution of the 

workload (virtual waiting time) in a non-Markovian single-

server queue with a time-varying arrival-rate function. They 

apply simulation and asymptotic methods to examine the 

performance of periodic robust queueing. Simulation 

examples show that the mean and the full distribution 

(specified by the quantiles) of the periodic steady-state 

workload are remarkably well approximated.  

For a detailed review and analysis of queueing models in 

the presence of nonstationarity, refer Green, Kolesar and 

Whitt [10]. 

We numerically study nonstationarity and abandonment in 

multiserver Markovian queues. Nonstationarity is modeled 

by having a Poisson arrival stream with time dependent 

mean, which varies according to a sinusoid. Abandonment is 

defined in terms of an exponential patience random variable, 

which is the amount of time the caller would be on hold 

before abandoning the call. We obtained our numerical 

results by solving a system of differential equations, which 

represent the birth death equations for the M(t)/M/s+M 

system. We numerically study the performance of this 

nonstationary queue with abandonment and compare its 

performance measures with those of the stationary M/M/s+M 

queue. 

We find that approximating a nonstationary system by a 

stationary system, even at low levels of nonstationarity can 

lead to significant errors. Similar results in a system without 

abandonment, have been obtained by Green, Kolesar and 

Svoronos [11]. Additionally, we find that abandonment 

dampens the effect of nonstationarity. At a high level of 

abandonment, a nonstationary system behaves closer to a 

stationary one. Since abandonment and nonstationarity are 

both present together in real call centers, a real call center 

with a high level of abandonment behaves closer to an ideal 

stationary system. 

The paper is organized as follows. In Section 2 we 

describe our Methodology. We next discuss our numerical 

results. In Section 3, we study the effects of nonstationarity, 

while in Section 4 we analyze the effects of abandonment. 

Conclusions are presented in Section 5. 

2. Methodology 

We obtained our numerical results by solving the 
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following set of differential equations, which represent the 

birth death equations for a M(t)/M/s+M system. 

( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( )( ) ( ) ( ) ( )

( )( ) ( )

0 0 1

1

1

1

1

                           + 1 ,   1

                           + 1 ,   s

n n n

n

n n n

n

p t t p t p t

p t t n p t t p t

n p t n s

p t t s n s p t t p t

s n s p t n

λ µ

λ µ λ

µ

λ µ θ λ

µ θ

−

+

−

+

′ = − +

′ = − + +

+ ≤ <

′ = − + + − +

+ + − ≤

 

Here ( )np t is the probability of n customers in the system 

at time t, ( )tλ  is the arrival rate at time t, µ is the service 

rate, θ is the abandonment rate and s is the number of servers. 

Thus the above is a system of linear first order differential 

equations, which needs to be solved numerically for the 

unknown functions ( )np t . 

Similar to Green, Kolesar and Svoronos [11], the arrival 

rate ( )tλ  is given by, 

( )     cos(2 / 24)t A tλ λ π= +  

where λ  is the daily average arrival rate and A is the 

amplitude of the sinusoidal process. Without loss of 

generality, the period is 24 hours. We need  - 0Aλ ≥ , so that 

( ) 0tλ ≥ , for all t. Here A is a measure of the nonstationarity 

in the process. As in Green, Kolesar and Svoronos [11], we 

consider Relative Amplitude (RA) = /A λ , as a measure of 

the degree of nonstationarity in the process. We have that RA 

varies between 0 and 1. 

We carried out the numerical solution of the system of 

ordinary differential equations using MATLAB. We used the 

numerical solver ode45 which combines a fourth order and a 

fifth order Runge-Kutta method. This solver is described in 

Hunt et al [19]. The Appendix contains the equations that are 

used for a fourth order Runge-Kutta method for solving a 

system of 2 differential equations, see Mathews and Fink 

[20]. The solver ode45 varies the step size at each step in 

order to achieve the desired accuracy. It is suitable for a wide 

variety of initial value problems. For numerical work, we 

divided the cycle of 24 hours into 144, 10 minute intervals. 

So the function ( )np t  is approximated by a discrete function 

at 145 time points, from t = 0 to t = 144 (i.e. 24 hours). For 

each n, we requested the solver ode45 to provide solution 

values at these specific time points. 

2.1. Initialization of the System of Differential Equations 

and Performance Measures 

The system of differential equations needs to be initialized 

with a probability vector ( )0 ,  n=0,...,Nnp , where N is the 

maximum number of equations solved. Define nπ  as the 

probability of having n customers in the system for a steady 

state M/M/s+M queue. Then nπ  is given as below, as 

defined in Garnett, Mandelbaum, Reiman [3]. 

( )

( )
( )

( )
( )

( )

0

0

1

1

0

0 1 1

/
                                   0

!
 

/
    

!
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/ /
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k
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k sks N

k k s j s
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k

s k N
s j s s
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λ µ
π

π
λ µλ π

µ θ

λ µ λ µλπ
µ θ

= +

−

= = + = +


 ≤ ≤


= 
  < ≤   + − 

  
 = +   + −   

∏

∑ ∑ ∏

 

We have that ( )0np  is taken equal to nπ , with 

( )0     Aλ λ λ= = + . 

We next describe the two performance measures for the 

system. Let nip be the probability of n customers in the 

system at the start of interval i, i = 1,.., 144. Let iλ  be the 

arrival rate at the start of interval i, so that 

144

1

 /144i

i

λ λ
=

=∑ . 

Then, similar to Green, Kolesar and Svoronos [11], our two 

performance measures are the daily (customer average) 

probability of delay, dp , and the daily average queue length, 

qL . These are defined below. 

1

144
0

1

1

144

s

i ni

n
d

i

p

p

λ

λ

−

=

=

 
− 

 
 =
∑

∑  

( )
144

1

/144

N

q ni

i n s

L n s p

= =

= −∑∑  

2.2. Results for the Stationary M/M/s+M Queue for 

Comparison 

For comparison purposes, we need to compare our 

performance measures for the nonstationary queue with 

abandonment, with those of the stationary M/M/s+M queue. 

However, analytical results for the performance measures for 

the stationary multiserver queue with abandonment are 

almost entirely intractable, to be of any use. See for example, 

Abou-El-Ata and Hariri [21]. 

Fortunately, Garnett, Mandelbaum and Reiman [3], have 

developed heavy traffic approximations for the performance 

measures of the M/M/s+M queue. The authors have found 

these approximations to be excellent for practical use, even in 

the case of medium sized call centers with 20 or more CSRs 

and moderate traffic intensities in the range of 0.6 or higher. 

These approximations are given as follows. Let, 
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We used the above approximations to determine 

performance measures for the stationary system for 

comparison, keeping in mind the ranges of parameters in 

which these approximations are applicable. 

We next discuss our numerical results. 

3. Effects of Nonstationarity 

We measure nonstationarity by the Relative Amplitude (RA) 

and our performance measures of interest are Expected Queue 

Length and Probability of Delay. For our numerical 

experiments, we fix s = 20, µ = 60, θ = 12 and we vary ρ and 

RA. 

We find that as we vary RA from 0.1 to 0.9, the expected 

queue length is a multiple times higher. From Table 3 below we 

see that the multiple is near 73 for ρ = 0.6 and near 5 for ρ = 

0.95. Thus as nonstationarity in the system increases (from RA = 

0.1 to RA = 0.9), expected queue length increases significantly. 

Table 3. Ratio of expected queue lengths at RA = 0.1 and RA = 0.9 for 

different values of ρ. 

Relative Amplitude Rho 0.1 0.9 Ratio 

0.6 0.04 3.06 73.33 

0.7 0.22 7.90 35.68 

0.8 0.84 13.47 15.98 

Relative Amplitude Rho 0.1 0.9 Ratio 

0.9 2.53 18.06 7.13 

0.95 4.07 19.92 4.89 

We can also compare the expected queue length for the 

nonstationary system to the expected queue length for the 

stationary system. At ρ = 0.9, the expected queue length for 

the stationary system is 1.99. For ρ = 0.9 and RA = 0.3, the 

expected queue length for the nonstationary system is 5.52 or 

2.7 times higher. At RA = 0.9, the expected queue length for 

the nonstationary system increases to 18.06 or 9 times higher. 

Below, we plot the expected queue length versus relative 

amplitude for different values of ρ. The expected queue 

length increases as relative amplitude increases. 

 

Figure 2. Expected queue length versus relative amplitude. 

Below we also plot the probability of delay versus relative 

amplitude. As we would expect the probability of delay also 

increases with relative amplitude. 

 

Figure 3. Probability of delay versus relative amplitude. 

Similar to Green, Kolesar and Svoronos [11], we define an 

Error Measure of Expected Queue Length as 

Actual Expected Queue Length Stationary Expected Queue Length
Error Measure = 

Actual Expected Queue Length

−

 

From our numerical results we find that for a RA of 0.3 or higher, the Error Measure is 50% or higher for all values of 
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ρ. In some cases (RA = 0.9, ρ = 0.6, 0.7, 0.8), the Error 

Measure is even higher than 95%. Below, we show the graph 

of Error Measure in expected queue length versus relative 

amplitude. 

 

Figure 4. Error Measure in expected queue length versus relative amplitude. 

In Table 4 below, we consider the stationary expected 

queue length as a percentage of the nonstationary expected 

queue length. For ρ = 0.6 and RA = 0.1, the two queue 

lengths are the same. However, for ρ = 0.6, by the time we 

increase RA to 0.9 and introduce significant nonstationarity, 

the stationary expected queue length is only about 2% of the 

nonstationary expected queue length. Or the nonstationary 

expected queue length is about 50 times higher. Similarly for 

RA = 0.9 and ρ = 0.95, the nonstationary expected queue is 

about 6 times higher than the stationary expected queue 

length. 

Table 4. The stationary expected queue length as a percentage of the 

nonstationary expected queue length. 

Rho Relative Amplitude 0.6 0.95 

0.1 100% 80.15% 

0.3 39.37% 41.3% 

0.5 11.71% 24.92% 

0.7 4.17% 18.91% 

0.9 1.83% 16.38% 

Thus approximating a nonstationary system by a stationary 

system, even at low levels of Relative Amplitude can lead to 

significant errors. Similar results have been obtained by 

Green, Kolesar and Svoronos [9], in a system without 

abandonment. It is therefore important to explicitly model the 

nonstationary behavior of arrivals in a call center and 

ignoring this behavior can lead to erroneous decision making. 

In the next section, we discuss the effects of abandonment. 

4. Effects of Abandonment 

For studying the effects of abandonment, we fix s = 20, µ 

= 60 and ρ = λ /sµ = 0.9. We vary RA from 0.1 to 0.9 and θ 

from 12 to 60. That is, the mean value of the patience random 

variable, which is exponentially distributed, varies from 5 

minutes to 1 minute. 

The graph of expected queue length versus θ, for different 

values of RA is shown below. 

 

Figure 5. Expected queue length versus θ for different values of RA. 

From the graph we see that for a fixed value of θ, as RA 

increases, expected queue length increases. Secondly, for a 

fixed value of RA, as θ increases from 12 to 60, the expected 

queue length decreases. Once RA gets fixed, the level of 

nonstationarity gets fixed. For the same level of 

nonstationarity, as abandonment increases expected queue 

length decreases. 

Table 5 below shows the ratio of expected queue length for 

RA = 0.1 and RA = 0.9, for different values of θ. We see that 

the ratio is around 7 for θ = 12 and decreases to about 4.5 for 

θ = 60. 

Thus abandonment dampens the effect of nonstationarity. 

At a high level of abandonment, a nonstationary system 

behaves closer to a stationary one. Since abandonment and 

nonstationarity are both present together in real systems, a 

real system with a high level of abandonment behaves closer 

to an ideal stationary system. 

Table 5. Ratio of expected queue lengths at RA = 0.1 and RA = 0.9 for 

different values of θ. 

Relative Amplitude θ 0.1 0.9 Ratio 

12 2.53 18.06 7.13 

24 1.72 10.77 6.24 

36 1.35 7.25 5.37 

48 1.12 5.47 4.87 

60 0.96 4.4 4.54 

Below, we show a plot of the Error Measure in expected 

queue length, as θ varies from 12 to 60 for different values of 

RA. 

 

Figure 6. Error Measure in expected queue length (%) versus θ. 
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The Table 6 below shows the values of the Error Measure 

in expected queue length at RA = 0.1 and RA = 0.9 for 

different values of θ. We find that the Error Measure of the 

stationary approximation is primarily affected by 

nonstationarity or relative amplitude. Abandonment has very 

little effect on the Error Measure. The Error Measure remains 

almost flat as θ varies from 12 to 60. For a RA of 0.1, the 

Error Measure remains almost constant with θ at about 20%. 

While for a RA of 0.9, the Error Measure remains almost 

constant at about 85%. 

Table 6. Error measure in expected queue length at RA = 0.1 and RA = 0.9 

for different values of θ. 

Relative Amplitude Θ 0.1 0.9 

12 21.50% 88.98% 

24 19.81% 87.15% 

36 19.76% 85.05% 

48 20.11% 83.6% 

60 20.6% 82.52% 

For our next set of numerical experiments related to 

abandonment, we fix s = 20, µ = 60 and RA = 0.8. We vary ρ 

from 0.6 to 0.95 and θ from 12 to 60. 

Figure 7 below shows the graph of expected queue length 

versus θ, as θ varies from 12 to 60 for different values of ρ. 

For a fixed value of θ as ρ increases, expected queue length 

increases. For a fixed value of ρ, as θ or the rate of 

abandonment increases, expected queue length decreases. 

 

Figure 7. Expected queue length versus θ for different values of ρ. 

Table 7 below shows the ratio of expected queue lengths at 

ρ = 0.6 and ρ = 0.95 for different values of θ. Firstly, as we 

would expect the effect of utilization is significant. At ρ = 

0.95 the expected queue lengths are roughly 8 times higher 

than at ρ = 0.6. Secondly, we see that abandonment does not 

dampen the effect of high utilization, to the same extent that 

it dampened the effect of nonstationarity. As θ increases from 

12 to 60, the ratio of expected queue lengths only decreases 

from about 9 to about 7. 

Table 7. Ratio of expected queue lengths at ρ = 0.6 and ρ = 0.95 for different 

values of θ. 

Ρ θ 0.6 0.95 Ratio 

12 2.05 18.74 9.13 

24 1.27 11.17 8.78 

36 0.94 7.52 7.94 

Ρ θ 0.6 0.95 Ratio 

48 0.76 5.67 7.42 

60 0.64 4.56 7.06 

In Figure 8 below, we show the show the graph of the 

Error Measure in expected queue length versus θ for different 

values of ρ. The Error Measure remains in a tight range of 

75%-97%. It is highest at 97.2% for θ = 12 and ρ = 0.6. It is 

lowest at 75.5% for θ = 60 and ρ = 0.95. It hardly varies with 

θ or ρ. What drives its value is the Relative Amplitude, which 

is a constant 0.8 in this case. From our previous numerical 

work, we would expect the Error Measure to be in the range 

of 80%-90% in this case, given a RA of 0.8. This turns out to 

be the case. 

 

Figure 8. Error Measure in Expected Queue Length(%) versus θ for 

different values of ρ. 

We next present our Conclusions. 

5. Conclusions 

We numerically study nonstationarity and abandonment in 

multiserver Markovian queues. We obtain our numerical 

results by solving a system of differential equations, which 

represent the birth death equations for the M(t)/M/s+M 

system. We numerically study the performance of this 

nonstationary queue with abandonment and compare its 

performance measures with those of the stationary M/M/s+M 

queue. We find that approximating a nonstationary system by 

a stationary system, even at low levels of nonstationarity can 

lead to significant errors. Similar results in a system without 

abandonment, have been obtained by Green, Kolesar and 

Svoronos [11]. It is therefore important to explicitly model 

the nonstationary behavior of arrivals in a call center and 

ignoring this behavior can lead to erroneous decision making. 

Additionally, we find that abandonment dampens the effect 

of nonstationarity. At a high level of abandonment, a 

nonstationary system behaves closer to a stationary one. 

Since abandonment and nonstationarity are both present 

together in real call centers, a real call center with a high 

level of abandonment behaves closer to an ideal stationary 

system. However, we numerically find that abandonment 

does not dampen the effect of high utilization, to the same 

extent that it dampened the effect of nonstationarity. 

Future work to study nonstationary Markovian queues 
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with abandonment can consider the Pointwise Stationary 

Approximation (PSA) of Green and Kolesar [22]. Consider a 

performance measure such as the expected queue length in a 

nonstationary system with abandonment. The PSA 

approximates this as follows. First, it uses the expected queue 

length of the stationary system with the arrival rate being the 

time-dependent arrival rate of the nonstationary system. It 

then finds the time average expected queue length. Green and 

Kolesar [22] found that the PSA is easy to compute and 

provides good estimates of key performance measures of a 

nonstationary Markovian system without abandonment. It 

would be interesting to see if those findings are applicable to 

a nonstationary system with abandonment. 

Appendix 

Runge-Kutta Method of Order 4 for the solution of a System of 2 Differential Equations 

Consider the system of differential equations 

( ) ( )
( ) ( )

( ) ( )0 0 0 0

, ( ), ( )

, ( ), ( )

with

x  and y  

x t f t x t y t

y t g t x t y t

t x t y

′ =

′ =

= =

 

A solution to the above system, is a pair of differentiable functions x(t) and y(t), which satisfy the above equations, refer 

Mathews and Fink [20]. 

A numerical solution to the above system, over the interval a≤t≤b is desired. The interval is divided into M subintervals of 

width h = (b-a)/M and the mesh points are tk+1 = tk + h, k = 0,..., M-1. 

The Runge-Kutta method of Order 4 is as follows. 

( )
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1 1 2 3 4

1 1 2 3 4

2 2
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The function x(t) is numerically approximated by the set of points xk, k = 1,..., M. Similarly, the function y(t) is numerically 

approximated by the set of points yk, k = 1,..., M. 
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